Research Note 83-9

A WORKSHOP ON THE GATHERING OF INFORMATION
FOR PROBLEM FORMULATION

Albert N. Badre
Georgia Tech Research Institute

ADALIZ7HGT

BASIC RESEARCH

DTIC

ELECTE

° APR 2 9 1983
=7

E
U. . Army oo

Research Institute for the Behavioral and Social Sciences

3
povy

(] '-
'aflee

September 1981

Approved for public release; distribution unlimited.

g3 04 28 118

.............................
P N A N I T o T P P

e T v T e .

Z @
Qe

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEE R e PE T o

T. REPORT NUMBER 2. GOVY ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER

Research Note 83-9 3D 4 /27 547
4. TITLE (and Subtitie) 5. TYPE OF REPORT & PERIOD COVERED

- Final Report
A WORKSHOP ON THE GATHERING OF INFORMATION 3/1/80 - 9/1/81
FOR PROBLEM FORMULATION. 6. PERFORMING ORG. REPORT NUMBER
: G36-651

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

MDA 903-80-C-0144 and
Modification No. 1

Albert N. Badre

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT, TASK
Georgia Tech Research Institute (o203 03 TISILS (LT T 450205
School of Information and Computer Science 20161
Atlanta, Georgia 30332 AR

n CBNEROLLIN%OFFI](.:E NSAME t:\luo Aool;qesshi . 12. REPORT DATE

efense Supply Service - Washington S
Room 10-245, The Pentagon TR Ni%ﬁﬁ‘:‘:,irp,‘];’gslgsl

Washington, D.C. 20310 148

14, MONITORING AGENCY NAME & ADDRESS(/! different from Controlfing Office) 1S. SECURITY CLASS. (of this report)
Office of Naval Research

Resident Representative Unclassified
325 Hinman Research Building Sa. DECLASSIFICATION/ DOWNGRADING
Ga. Institute of Technology, Atlanta, GA 30332 PENSETE

16. DISTRIBUTION STATEMENT (of thie Repori)

Approved for Public Iielease; Distribution Unlimited

17. DISTRIBUTION STATEMENT (of the ebatrect entered {n Biock 20, {1 different from Report)

18. "UPPLEMENTARY NOTES

19. KEY WORDS (Continue ¢ reverse eide ii necessary and tdentify by bicck number)

Human-Computer Interface
Interactivity
Information Processing

20.

[-2

ABSTRACT (Continue on reverse side il necesaary and identity by dblock number)

T “;nmpmuseo!thiemhhopmwbﬂngwg&hﬂagwapo!weh
scientists from various disciplines to discuss and report their research
findings on the topic of problem representation for interactive information

processing. During the planning phases of the project, it was agreed that

DD |, oi™, 1473 €0imion OF 1 NOV 63 15 OBSOLETE Unclassified
i

SECURITY CLASSIFICATION OF THIS PAGE llhen Data Entered)

...........

Unclassified
\ SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

>\the proposed general topic should be limited to the problems of representation
and information processing in the context of human-computer interface. Based
on this theme, a set of topics were developed and used to select and organize
speakers and panels. These were:

e"}),_'h/ Psycholinguistic factors in computer communication}

§zL— Compatible knowledge and memory structures for computer
communication;

' 7.3+ Representing and structuring displayed information in
computer communication, - i

_#4.” Representing information for decision, learning, and help

processes in computer communication.

The end result was a very sucessful kkshop that included a total

of twenty presentations and forty participanté.

Accession Por

NTIS ORA&I X
DTIC TAB @)
Unanneunced O
- Justification . _ |
- .
- Distribution/
&5 Availability Codes
¥ Avail and/or
Dist Special

Ilnclassified
ii SECURITY CLASSIFICATION OF THIS PAGE(When Data Entared)

- P — B .

~

I dosh

ST
F ey

——

Y|

.L‘j‘,L'. :

Table of Contents

PAGE

Table Of contents-----------.--o--.--o-----------.---..-------... i
SChedUIQ Of EventSQccc-ccccc.c.cc-cccccccc-ccccc-----l--ccc-.c-.- 1

Albert N. Badrecccc!c....!.cc.!c.ccccc-.cc-cc-.--cc.n---lccclcc-c 2

Introduction

RiChard Burton-------o-----------------------a-----.------------- u

Experiences with a Natural Language Interface to an
ICAI System

Jaime G. carbonelloccccocc.cc.-c-.cccc-ccc-ccc----acc---cccccccc- 5

Towards a Robust, Task-Oriented Natural Language
Interface

sam L. Ehrenreich..............cccccccc...c.cccc.ccc.cccccl.cccc- 1u

Creating an Algorithm for Generating Abbreviations
to be Used in User-Computer Transactions

Jim Foley..cccccccc..........c...........!..c.cccccl--c.ccl-.---- 16

Tools for Designer of User Interface

Georse H. Furnas..I....................I..II.....I..I....I..I.III 28
Psychological Structure in Information Or _anization

and Retrieval: Arguments for More Considered
Approaches, and Work in Progress

Mark D, Jackson and Judith E. Tschirgi.eeceecescoscncscnscscceacees 32

The Nature of User-Generated Commands for Interacting
with a Computer

.......................

...............................

Janet Kolodner.Il..l..lll..l.l.lllll.lllllllllllll....llll.lll..l 3u
A Conceptual Approach to Natural Language Fact
Retrieval

Thomas K. Landauer and Susan T, Dumais....ccceecessesscscnsccenes 45

Psychological Investigations of Natural Command and
Query Termineology

MiChael Lebowitz......l.Oll.ll....l.ll.lll..l.l..lll.ll...l..l... ua

Organizing Memory for Use in Understanding

Mark Hiller and Paul R. Michaelis....l...l............lll.l...lll 55
Artifical Intelligence and Human Factors: A Necessary
Synergism for the Interface of the Future
Franklin L. msesl........l..ll......l.lll.l......ll...lll.ll...l 87
Overview of Selected Display Formatting and Clutter
Reduction Techniques
Phyllis Reisner...............l....0......'.Oll.........l.l....l..92

Formal Grammar Representation of Man-Machine
Interaction

Elaine RiCh and Aaron Teminccc..c!!ccc.ccc.!cuccllllcl!lccc..c.cc 96

A Role Based Help System for Scribe

MiChael L. schneider000000000000l..icc....c!clcclccc-c.ccccsllcl0107

Models for the Design of Static, Software Systems

&n Shneiderman...C.......C.0..................'."...C..CC...CII118
System Message Guidelines: Positive Tone,
Constructive, Specific, and User Centered

Elliot &lony and Jett mnar.COCOOOO....C.‘C.l..................125

Empiricel Evaluation with Novice Users of Some
Programming Language Constructs

“
v

.
o b W)
ALK RS ANE P D

7 A

"

AP A

S ES
sdatatala

[

Albert L. Stevens, Michael D. Williams, and James D. Hollan......134
An Advanced Human Interface for Computer Assisted
Instruction in Propulsien Engineering

John c. mmas‘.............II................l...............III135

Metamorphosis through Metaphor

Michae] D. williams and J. Hollan.coocoooooco00000....0.0...-.-..1”0

A System for Computer Aided Memorization

APPENDIX A................II...............I..I'I................1u2
Names and Addresses of Participants

I

.
o Workshop on Human Computer Interaction
Revised Schedule
"t lnursday, Jareh 26, 1901
r> } .
£{ Qe = qligtit Coffer an Peurhnuts
149:00 - 18245 Openiryg Session
Lo A. Badre
5% S. Halpin
1045 -~ 12:2 Lindelins rhe Y'ser

E. Rich and A, Temin
o M. Schneider
- €. Soloway and J. Bonar
12:33 = 1:2 Luncheon

000>
YA

¢ el
-

N

[]

T:00 Tpterfaces = Neveloprent

J. Foley
X M. Miller and P. Michaelis
i J. Thomas

J:000 = 3:30 vipreak = Coffee and Softdrirke

3:2 = T fesinrine Intellinert Interfaces

v R. Burton
- J. Carbonell
i’ A. Stevens, M. williams, and J. Hollan

N Friczy, Zarch <7, 1211

EOm

O fe30 e 63 feffer and Pruchruts

. . P:00 = 11:00 =umen Factars of Interactive Lor uarecs
5 S. Ehrenreich
= G. Furnas
3 T. Landauer and S. Dumais
- M. Jackson and J. Tschirgi
e MM = 11318 tireak
. 11:15 =12:4° “emory Structures for Pur.n=(rronter (Groenicartion
i J. Kolodner
- M. Lebowit2
. M. Williams and !. Hollan
L 12:4% = 1:4% Lunchron
i

. 1:4% = L5007 ‘asgz.es and Mis-laye

F. Moses

E' o P. Reisner

o B. Shneiderman

c ireak = Cotfee and Scft Irirks

~ener:l Miscussicn and “urnary

M nel

P ST . s
e M at et et Lt et PSR a P T T R LR

. - Ol oo . RN D I R R TPt I TR T T S R L et et 4 etet ety
ol a s o f ot s o N W Wl Sl SR WY V. 0 | N B B licnc B B B B Do B B Do D o Ao T om R R e e N N

THE HUMAN COMPUTER INTERFACE

INTRODUCTORY REMARKS

Albert N. Badre

When asked to sit down at a computer terminal and perform what
is considered an elementary task, most novice operators are likely
to be confused and frustrated. Even the simplest of tasks seems to
require an excessive level of computer sophistication or the
motivation to read and understand an over abundance of accompanying

documentation.

The population of computer users is growing at a very rapid
pace, and an increasingly large number of this generation of new
users is not data processing or computer trained. Yet,

- the language that the operator must use to interact with

the machine

- the documentation, whether on-line or off-line, that
he/she has to read in order to learn how to instruct the

machine; and

- the system messages that are displayed

are couched in the vocabulary and language habits of the computer

expert.

Accordingly there is a growing consensus in the computer science

A

%}. community that the user-compatibility of the human interface should
Wy
- be considered and incorporated into the design of all computer systems
j} at the initial stages of development. '"Information processing"
systems are likely to be more user compatible if they are designed to
adapt to the information processing capabilities and limitations of
;2 the user. It is becoming, therefore, increasingly necessary to
.** explore and identify the human information processing factors,
éi constraints, and variables that are associated with making the
%; S interface more user compatible. This means identifying and
Zi X considering factors relating to what the operator '"does" at the
<3
o ii display station in order to perform a desired task and what the

system does in return.

In this workshop symposium we will be dealing with six inter-
related topics that revolve around the user interface theme. These
are: Modeling the user, interface development factors, design

N considerations for intelligent and adaptive interfaces, memory

structures, the human factors of language interaction, and messages

and displays.

Experiences with a Natural Language

Interface to an ICAI System

Richard Burton

etha
Tetal e

-
.

A
%

emten lataie s

Towards a Robust, Task-Oriented
Natural Language Interface

Jaime G. Carbonell
Carnegie-Mellon University
Pittsburgh, PA 15213

Abstract

This paper analyzes the inception of a new generation of robust, task-oriented natural language
interfaces in light of new theoretical advances and analysis to avoid limitations oi previous efforts.
Three key ideas are discussed: 1) dynamic selection of parsing strategies, 2) exploiting domain-
specific semantics and grammatical constructions, and 3) integrating recent theoretical findings into
task-oriented parsing. An impiemented natural language interface conforming to some of the new
objectives is discussed, as are current plans for a more-general-scope natural language interface.

3 February 1981

Towards a Robust, Task-Oriented
Natural Language Interface
Jaime G. Carbonell

Carnegie-Mellon University
Pittsburgh, PA 15213

L 1. Objectives and Historical Perspective

) Natural language comprehension has been studied from two primary perspectives in Artificial
' Intelligence:

m e As a vehicle to investigate and simulate human cognitive processes embodying

components of either a linguistic or psychological theory of language comprehension.

e As a means of implementing task-oriented "natural language front ends” to complex
computer systems.

The "basic science” approach has produced some significant principles and techniques (e.g.,
expectation-based language analyzers {7, 1]), but no trulv robust parsers for computer-naive users
~ have been developed in this paradigm.

The applied "engineering™ approach has proceeded by either building the domain of application
into the parser itself, or by relying on syntax-only linguistic parsers. Neither approach has proven
wholy satisfactory. The former suffers from virtual lack of transferability to new domains, while the
latter sufters from extreme fragility: the inability to cope with any input not strictly conforming with its
rigid internal grammar. However, it must be noted that some successful parsers have emerqed from
these limited approaches, such as LIFER [5] and LUNAR [8]. Both of these efforts, unfortunately,
required man-years of development and tuning before thewr performance approached the user-
acceptance level. Their primary contributions were in the computational mechanisms they
introduced, which could later be incorporated into more sophisticated parsers.

A major objective in the design of task-oriented parsers is to provide the user maximal flexibility
(within the semantics of the domain) to express his utterance. For example, the graceful interaction
project [4] is a recent attempt at coping with limited ungrammaticality in a task-oriented parser. The

IR a®y B i e e s
U R . T L R A ST
’.‘-. s a2 g% © R

means by which recent task-oriented parsers strive for robustness and flexibility is to incorporate

Sumnat s S

domain semantics into their parsing knowledge bases (but not into the programs themsetves). Here,
we go one step further and exploit domain knowledge to dynamically choose the optimal parsing
stru.cgies. Moreover, the work described in this paper attempts to take full advantage of lessons
learned from more theoreticai natural language research. Our objectives can be summarized as

,-.....
@

follows:

-
LaINGhORCR R
TR
P P

o a T Y S U

[

e Create a robust parser, in the sense that it must tolerate common ungrammaticality,
ellipsed constructions, and different phrasings within its domain of application.

¢ Implement the parser in a modular manner with respect to its knowledge sources. This
means that domain knowledge necessary for the parser ought to be divorced trom the
program, from general semantic knowledge, and from linguistic knowledge. Hence, only
one knowledge base need be altered in transfering the parser to a new application
domain. The program itself is general with respect to the choice of task domain.

e Exploit new advances in natural language processing not previously incorporated into
task-oriented parsers. Some well-established powerful methods developed to simulate
buman language understanding (most notably expectation-based disambiguation) have
not previously been used in task-oriented approaches, although they have proven
computationally =ftective in more general domains.

o Minimize the time required to transter the parser to a new domain. This goal is furthered
by our modularity consideration, but in addition | want to work towards a uniform method
of incorporating new domain knowledge, including knowledge of technical jargon
particular to a given domain.

In order to further these ends | developed an initial parser that combines partial pattern matching,
semantic-grammars [5] and equivalence transtormations. | applied this parser to the task of building
and querying a semantic-network [2] data base. The central lesson learned from this exercise is that
the combination of the three parsing strategies yields not only a more robust parser than a single-
strategy method, but surprisingly the time it took develop its domain application (admittedly not a very
complex task) was considerably less than expected (less than three weeks).

A crucial (and perhaps unintuitive) fallacy of previous task-oriented parsers is their commitment to a
simple uniform parsing strategy. Since natural language is a complex phenomenon (even in task-
oriented domains), this design criterion had the effect of pushing the complexities into the domain
grammars, dictionaries and other domain-specific components of the parser. In the clearer vision of
hindsight, this design decision greatly complicated the application of existing parsers to new
domains. Is it not more desirable to incorporate all the decision-making complexities required to parse
natural language structures into the kernel program itself? Once built, this program need not be
redesigned for a new task domain. Minimizing the requisite complexity and size of domain-dependent
components is an extremely productive venture. Parsing-strategy selection, semantic matching
routines, and other domain-independent compnnents should be provided as a kernel parser, which is
augmented by domain-specific knowledge bases in each applications domain.

In designing the kernel parser, a dominant criterion is that it select the parsing strategy in
accordance with the type of natural language construct it attempts to parse. Some information can be
expressed more naturally and more parsimoniously in one form (e.g., linear patterns) while other
information is best expressed as case structures, equivalence transtormations, or semantic grammar

- Lt ot ad ol o0 o4
DRCARAAGAOR DA M R

P B G0 e e
I TR | 5 WSl

productions. To illustrate this point, | attempted to encode all the knowledge in my parser as a pure
semanti@‘grammar. This task has more than tripled the size of the task-specific knowledge base, and |
have not yet finished (nor do | intend to finish) the conversion. The primary reason for the relative
increase in size is that much of the information must be stated with a high degree of redundancy and
often in an awkward, round-about manner when it must be coerced into a uniform, context-free
representation.

2. The DYPAR Parser

DYPAR' combines three parsing strategies:

e A context-free semantic grammar component, grouping domain information into
hierarchical semantic categories useful in classifying individual words and phrases in the
input language.

¢ A partial pattern match component, represented as pattern-action rules. The patterns
may contain individual words, semantic categories (from the semantic grammar), wild
cards, optional constituents, register assignment and register reference. This method
enables the semantic grammar non-terminal categories to be applied in a much more
effective context-sensitive manner than would be the case is a pure context-free grammar
recognizer.

s Equivalence transformations map domain-dependent and domain-independent
constructs into canonical form, requiring a fraction of the patterns and semantic
categories that would otherwise be necessitated. If a phrase-structure can be expressed
in several different ways, while retaining the same meaning, it is clearly beneficial to first
map it into canonical form, rather than being forced to include all possible variants in
every context where that constituent cculd occur.

Below | give an example of each type of linguistic information used in DYPAR. In order to
understand these examples, a few notational conventions must be introduced: <BRACKETS> denote
a non-terminal semantic grammar symbol. A word starting with an exclamation mark (e.g.,
IREGISTER) denotes the name of register. A vertical bar (|) denotes disjunction in a pattern. A # in
a pattern matches a single word. An asterisk (*) matches an arbitrary sequence of words. The
construction (IREGISTER patte rn) assigns whatever matches the pattern to the register specified. A
colon (:) before a constituent in a pattern indicates that constituent is optional.

DYPAR, as we see in the dialog below, is the front end of a semantic network data-base update and
query system. Therefore, its domain knowledge consists of language constructs relevant to this task.
First, consider a fragment of its semantic grammar:

1Robust multi-strategy "DYnamic PARsing" is still in its infant stages, requiring frequent changes.

8

TTER .. .Y,

o

rRach g s . o ot B Sn b £ 48 . GO aree Sm sedw re mas

{INFO-REQ> -> (<WHAT-Q> | <INFO-REQ1>]
{INFO-REQ1> -> (: <POLITE> <INFO-REQ2> : <WHAT-Q>]
{INFO-REQ2> -> (TELL <me-US> . ABOUT | GIVE <me-US> | PRINT | TYPE]

This fragment, together with the rewrite rules for the other non-terminals above (e.g., <BE-PRES>,
whose rewrite is all the present-tense conjugations of the verb "to be") recognizes the initial segment
of information-request queries such as: "Whatis ...", "Tell me whatis ...", "Tell me about...", "Would
you give me ...", etc.

Now, consider a pattern-match rule:

(: <det> (lval #) <be-pres> : <DET> (IPROP #) OF
: <DET> (INAM #) : <dpunct)>)

=)

(LTM-STORE INAM IVAL IPROP)

This rule recognizes sentences such as: "Felix is a friend of Fido", or "Reagan is president of the
USA", and passes the informaticn to the data base manager for consistency checking and storage. In
order to pass the information gathered in the pattern match process, the registers are assigned
appropriate values. For instance, in the second example, INAM is assigned "USA", IPROP is assigned
"president” and IVAL is assigned "Reagan”.

The equivalence transformations also use the pattern matcher. For instance, consider the following
simple (but useful) transformation:

((1S1 *) (W1 #) <POSS> (1w2 #) (1S2 *) : (1P <PUNCT>))
D
(NCONC 1S1 W2 (LIST 'OF) IW1 1S2 IP)

This transformation maps possessive constructions into attribute-value constructions, which we
chose as canonical. For irstance "Tell me about the VAX-785's performance." is mapped into "Tell
me about the performance of the VAX-785." The latter construction is recognized by a pattern-action
rule. Since possessive constructions can occur in many contexts, the single transformation above
saves us from dupiicating pattern match rules for each different context where an attribute-value
construction can occur.

The control structure of DYPAR is essentially an applicative condition-action cycle, whicin halts
upon no rules being applicable (in which case a partial patiern-match strategy is attempted), or upon
one of the pattern-action rules firing and passing its information to the data-base manager. Let us see
a brief dialog with DYPAR. For simplicity, we start out with an empty data base. ltems in italics below
were typed in by the user. Everything else was output by the system. ltems in UPPER CASE are
paraphrases of internal semantic network relations output by a rudimentary English generator.

*(parser)

You can build and query a simple semantic network

by stating information and quertions in tnglish.

+Fido is a nice dog.
Storing assertion in semantic net: FIDC IS DOG.

[COMMENT: When DYPAR does no! :ceceynicze concepts in Lhe input, 1L prompts
the user fcr addetional information required by the integrity-checker
in the data-base manager.]

What is NICE?
+Nice is a disposition.

Storing assertion in semantic net: NICL 1S DISPOSITION.
Is it correct to say that THt DISPOSITION OF F100 IS NICE?
(Y.N): Yes

Adding new assertion: THE DISPOSITION OF FIDO TS NICE.

+Fido's cousin is Felix.

Transforming (FINO $S COUSIN IS fLLIX PERIOD)
Into ::> (THL COUSIN OF FIDG IS FLLTX PERIOD)

Transforming (THE COUSIN OF iy 1l tELIX PERIDD)
Into ::> (FLLTIX IS THE COUSIN CF HINO PLRIOD)

Adding new assertion: VHE COUSTH OF TIDO IS FELIX,

[COMMENT: To illuvstrate the parsing procecs 1a a2 bit more detasd,
the rule tracer was activated for the follow:ng intaraction.]

+Cousin is a symmeiric relation.

Parse is:

Rule RUL19

Action will be: (PROGN (LTM-STORF !NAM !VAL (QUOTE [SA:))
(LTM-SPEC !NAM !VORP NIL NIL 1))

With bindings:

('VAL RELATION)

{ 'VORP SYMMETRIC)

('NAM COUSIN)

¥

bl

M I already knew that: COUSIN WAS A RELATION.

| _ .

L Is it correct to say tnat THI RELATION OF COUSIN 1S SYMMLIRIC?
F@

poe (Y ,N): yes

Bo, > Adding new assertion. THE RLLATION OF COUSIN TS SYMMETRIC.

g Inference: Adding new assertion: THE INVERSE OF COUSIN IS COUSIN.
F;:- Inference: Adding new assertion: THE COUSIN OF FILIX S FIDO.
£

E'-. +Lat chasing s a dog's hobbhy.

s

bl Transforming (CAT-CHASTNG 1S A B05 55 HOBLY PERIOD;

Mo

——
P

1G

Into ::> (CAT-CHASING {S A HOBBY Of DOG PIRIOD)

Adding new asserticn: THL HOBBY OF DOG IS CA!-CHASING.

| COMMENT : Since the program never heard of “dog” or "fide"
it does nol know whether to exoress them with o withoul & determiner

W !:!"‘T’ﬂ G e 4 g " €
:' 4‘: a‘l -.‘o‘u lhA.' o .'...’ ‘l L
.

e "Fido™ is a proper name, therefore it needs ao determiner, but “dog”
- in all the examples above 1onis st.ange without onr~. Now, we fix that
s problem by providing the program with the necessiry informatior (in

English, of course).)

+The concept of doy is generic.

Transforming (THE CONCEPT OF DOG IS GENERIC PLRIOD)
Into ::> (GENKRIC IS THE NODF-TYPE OF DOG)

[COMMENT: 1n our domain "concept” and “"noda-lype” are synonywms In
future output, "dog” will be printed with a dely iiner ahen appropriate.]

Adding new assertion: THE NODE-TYPE OF BUG IS GENERIC.
+Could you tell me what a dog's hobby is?

Transforming (COULD YOU TELL ME WHAT A DOC €S HOBBY [S QMARK)
Into ::> (COULD YOU TELL ME WHAT 1S A DGO $S HOBBY QMARK)

Transforming (COULD YOU TELL ME WHAT IS A DOG $S HOBBY QMARK)
Into ::> (COULD YOU TELL ME WHAT IS THE HOBBY OF A DOG QMARK)

THE HOBEBY OF A DOG IS CAT-CHASING.
+give me everything you know about fido

FIDO IS A DOG.

THE HOBBY OF FIDO IS CAT-CHASING.
THE COUSTIN OF FIDO IS FFLIX.

THE DISPOSITION Ot FIDO IS NIfL.

+Napping is tie hobby of Fido.

That contradices what 1 could infer 6, interito:ce.
THE HOBBY OF 1100 WAS CAI-CHASING.

Should I add the assertion anyway” (Y NY: a0,

Ok, discarding new assertion.

+Exit this program.

Leaving naturai language interface. [Back to LISP.
(CPU-SECONDS: 12.056 GC-TIME: 6.780)

AS we see in the aoove example, robiust communication win ithe user requires not only a flexib

Ottt sl et a4 o i e AN R AR
-
»

li

W
'

T
o5
v
v

+

h35 AN TAORCICE)
e s,)
PLIS e e e

AP

TV T
® ;

-, ame- sewre v v very
= Py .", R
B B

. i ’ ...4'. ,.:..._.

3
b
-
r
).
L:.

domain-oriented parser, but also an interactive query capability and a natural language generator.
However, the latter two processes are conceptually simpler, and not the topic of this paper.

3. Future Directions

DYPAR illustrates the harmonious integration of three parsing strategies. However, it is only the first
step in exploiting the multi-strategy approach to develop real-world, robust, natural language
interfaces. In terms of sophistication, DYPAR straddles the boundary between an advanced toy and a
rudimentary real-applications system. One direction of continued development is to enhance the
pattern matcher, build additional general transformations, and create a sub-interface to facilitate
extensions to the grammar by a domain expert (not necessarily a natural-language expert). A first step
in the direction of automating and simplifying user extensibility has been taken in the development of
the KLAUS system [6]. At CMU, we are focusing on a complementary, and perhaps more fundamental
research direction.

If the gestalt performance of integrating three parsing strategies has proven more effective than the
application of any single strategy, why not extrapolate this result to include additional parsing
strategies? Indeed, we have designed a flexible control structure for integrating case-instantiation as
the central parsing strategy -- calling upon other strategies discussed in this paper, in addition to
more domain-sp<cific strategies, when appropriate [3]. Case-frame instantiation is the most general
parsing strategy capable of exploiting domain semantics. Hence, it should provide a quantum jump in
the general applicability of our task-oriented parser. Moreover, techniques such as expectation-driven
disambiguation {7, 1] developed by the non-applied school of natural language processing, can now
be brought to bear in real-world applications. The reason why case-frame parsers have not been
developed in task-oriented domains is that while they capture general principles admirably, they fail to
recognize specific idioms, compound nouns and the like. However, the addition of partial pattern
matching (idealiy suited to detect idiomatic expressions) integrated with case-frame instantiation and
other parsing methods should provide a high degree of generality without sacrificing robustness.

Graceful interaction with the user is a worthy goal for any natural language front end whose users
may be computer-naive. People invariably produce ungrammatical utterances, leave out words, add
interjections, and use terms outside the vocabulary of any system [4]. It is essential that a real-world
system "fail soft” in such circumstances, and interact with the user to enable graceful recovery. We
saw some simple examples of this in DYPAR. However, the expectation-setting provided by a case
system incorporating domain knowledge can be a more powerful tool to minimize failure.

Consider, for instance. a file-management system where a user may type "Transfer the flies in my
directory to the accounts directory.” It is fairly clear to us humans that the user meant to type "files",
even if we know perfectly well that "flies” is a legitimate word in our vocabulary. A case-frame system

12

.............

knows that the objective case in the transfer imperative (as applied to the file-management domain)
requires a logical data entity, which "flies” is not. Realizing this violated semantic requirement, it can
proceed to see whether by spelling correction, morphological decomposition, or detecting potential
omissions it can map "flies" into a known filler of that case. Here, spelling correction works, and the
system can proceed to inform the user of its correction (allowing the user to override if need be).

I conclude by reiterating my central theme: Integration of multiple parsing strategies is perhaps the
single most powerful principle in the development of robust, iask-oriented natural language
interfaces.

4. References

1. Birnbaum, L.and Selfridge, M., "Conceptual Analysis in Natural Language,” in Inside
Computer Understanding, R. Schank and C. Riesbeck, eds., New Jersey: Erlbaum Assoc.,
1980, pp. 318-353.

2. Brachman, R.J., "On the Epistemological Status of Semantic Networks,"” in Associative
Networks, N. V. Findler, ed., New York: Academic Press, 1979.

3. Carbonell, J.G. and Hayes, P.J., "Dynamic Strategy Selection in Flexible Parsing,"
Proceedings of the 19th Meeting of the Association for Computational Linguistics, (Submitted
1981).

4, Hayes, P. J. and Mouradian, G. V., "Flexible Parsing,"” Proceedings of the 18th Meeting of the
Association for Computational Linguistics, 1980 , pp. 97-103.

5. Hendrix, G. G., Sacerdoti, E. D. and Slocum, J., "Developing a Natural Language Interface to
Complex Nata,” Tech. report Artificial Intelligence Center., SRl International, 1976.

6. Hendrix, G. G. and Haas, N., "Acquiring Knowledge for Information Management,"” in Machine
Learning, Michalski, R., Carbonell, J. G. and Mitchell, T., eds., Palo Alto, CA: Tioga Pub. Co.,
1981,

7. Riesbeck, C. and Schank, R.C., "Comprehension by Computer: Expectation-Based Analysis
of Sentences in Context,” Tech. report 78, Computer Science Department, Yale University,
1976.

8. Woods, W., Kaplan, R.and Nash-Webber, B., "The Lunar Sciences Natural Language
Information System: Final Report,” Tech. report 2378, Bolt Beranek and Newman Repor,
1972,

13

Sl
s Yy
v

o

s Ten
i

P

v
PR)
s

H
)

C ".1.-.»'1' D ACNER kid
T

A agn

T o

b e ik ant J0e e et Jath At

CREATING AN ALGORITHM FOR
GENERATING ABBREVIATIONS TO BE USED
IN USER-COMPUTER TRANSACTIONS
Sam Ehrenreich
US Army Research Institute for the
Behavioral and Social Sciences

The US Army is in the process of developing automated tactical systems.
These systems will incorporate a dialogue mode (e.g., form-filling, menu, query
language) for communicating between the user and the computer. For the con-
venience of both, much of this communication will involve abbreviations. The
Army Research Institute (ARI) is engaged in preparing an algorithm for use by
system designers in creating easy to use abbreviations for these systems. The
algorithm will not only be concerned with generating abbreviations for command
terms. Rather, the primary domain of the algorithm will be the lexical terms
used in exchanging information between the user and the computer.

This summary describes the empirical issues that were investigated in ARI's
abbreviation project. The data that was collected, along with an algorithm for
generating abbreviations, will be presented at the workshop.

All of the experiments for this project have already been completed.
However, a few still remain to be anaiyzed. The participants used in these
experiments were enlisted Army personnel. The stimuli used were words which are
likely candidates for abbreviation on an automated tactical system. However, it
is believed that the nature of both the participants and the stimuli are such
that the resulting algorithm will be applicable for use with most classes of
operators and with most sets of words.

The general abbreviation techniques which were considered as candidates for
forming the basis of the algorithm are: (1) truncation, i.e., delete all but the
first few letters of a word; (2) contraction, i.e., remove all of the word's

vowels except for vowels occurring as the first letter; and (3) abbreviation

14

..1,4._:...'-,',-.:.‘;'1’ b it SR af o e —_a

by the consensus of a committee. In order to create the desired algorithm, the

empirical questions which were investigated are:

1. What are people's personal preferences with regard to the abbreviations

formed by the different abbreviation techniques?

2. How do the different abbreviation techniques compare when participants are

presented with a word and asked to recall its abbreviation (i.e., encoding)?

How do the methods compare when'the task is decoding?

3. When participants are asked to produce abbreviations of their own choosing,

what abbreviation method do they tend to naturally use?

4, When participants' experiences with a word and its abbreviation increases,

do the absolute and relative effectiveness of the different abbreviation tech-

niques change?

5. When participants are instructed in the rule system underlying the different

abbreviation techniques, do the absolute and relative effectiveness of the

abbreviations change?

6. Should abbreviations be of a fixed or variable length?

7. How can different wcrds that result in identical abbreviations be handled

(e.g., when using the truncation method, both TRANSLATOR and TRANSPORT are

abbreviated as TRAN)?

8. Can endings (e.g., -ed, -ing) be effectively incorporated into abbreviations?
The answers to these questions will represent the empirical basis on which

an abbreviation algorithm is formed. The desired algorithm is one which is

completely deterministic in the abbreviations it forms. Using the algorithm,

the system designer should have minimum input in determining the abbreviation to

be created. Although the algorithm that will be created will not be based on a

complete investigation of all possible variables, it is expected that it will

result in abbreviations which are significantly easier to use chan the arbitrary

and inconsistent abbreviations presently used on Army systems.

15

Tools for the Designers of User Interfaces#

James D. Foley

March, 1931

Institute for Information Science and Technology

Department of Electrical Engineering and Computer Science

School of Engineering and Applied Science

;E The George Washington University

Washington, D.C. 220052

REFORT CWU-IISV-81-07

This paper was presented at the Workshop/Symposium on Human
Computer Interaction, sponsored by the U.S. Army Research
Institute and Georgia Institute of Yechnology.

¥

—~
~
i

i S .
9090860, o
) oLt te -

#This work is being carried out by the author and M. B.
Feldman, co-principal investigator. H. Holmes, Visiting
Scientist from Lawrcnce Berkeley Laboratory, J. Thomas,
Visiting Scientist from Battelle Northwest Laboratories.
Research Assistants 7. Bleser and G Rogers: Graduate
Research Assistant A. Kamran, and F. Chan. The work is
: partially sponsored by the U S. Department of Energy (Grant
® DE-AS05~79ER1032) and the U.S. Army Research Institute
B (Grant MDA 903-79-G-01). V.L. Wallace of the University of
Kansas is co-principal) investigator with the author for the
work entitled "Evaluation of Intevaction Techniques."

DAChancs B ACHE MR AR
a B “ et T

e S i

oo cames e e ol S oot o

16

ey

i T et e et S 'I' ‘I‘l . i' i l‘llil'.'.l PRI TN, WOUNr L Sy G e P S . S

lools Por the Designers of User Interfaces

Our research objective is to develop methodologies and
tools which <can aid in the decign of user—computer
interfaces. We .want to impose structure on the typically
very complex task of designing a use¢r—-computer interface, so
the de<ign can be divided into manageable pieces: each of
which can be dealt with in a systematic, rigorous and at
least partially quantitative way. We believe this will help
make User Interface Design move of 3 science and less of an

art, and iead to improved design.

The actual procecs of designing a user interface can be
accomplished as four major steps, which we <call the
conceptual, semantic, syntactic, and lexical design steps.
Each step can be dealt with in sequence, one after the
other, with an occasional reexamination of a previous step.

We call thece four steps a design framework.
The Design Framework

The conceptual design is the definition of the key
application concepts which the user of the interface must
understand in order to uce the system. For a simple text
editor, the key concepts are files, lines of a +file. and
operations (add, delete; move) on lines. The conceptual
model, as in this case, typically dcfines objects, relations

between objects (a line is in a filc¢;, and operations on the

17

objects, and sets the stage for the semantic design of ¢the

user-computer interface.

The semantic design deals wih the functionality of the
system to be accessed via the intermediary of the wuser
interface. The user performs certain actions,
calculations/processing ensues, and information is presented
to the user. At the semantic design level we are coucerned
only with the meanings of the inputs, the processing., and

the outputs: we are not concerned with the form or the

sequence of the inputs and outputs.

Féé The syntactic design deals with the sequence of the

inputs and outputs. For the input, sequence is akin to

grammar -~the rules by which sequences of words in a language

are formed into legitimate sentence:z. The types of words in
an input sentence are typically commands, quantities, names,
cgordinates, or arbitrary text. As in English, the words

are the units of meaning in the input and cannot be further

decomposed without Josing their meaning. ta include the
spatial domain as well. Therefore the output syntax

includes the 2D or 3D organizat on of a display as well as

-
re

any temporal variation in the form. The ‘"words" in ¢the

output sequence, by analogy to the input sequence, represent

18

i

e

o,

[

E.“ the units of meaning being conveyed from the computer to the
L J

Ef? user. The units of mecning are often conveyed graphically as
b

t; symbols and drawings made up of lines, curves, and points
Vo

E]{ rather than as words made up of letters.

e

o

b

LT

S

L

1

P S P o 2 e~ .

The lexical decign determines how words in ¢the input
and output are actuilly formed from the available hardware
capabilities. For input, this involves designing the
interaction techniques for the application. An interaction
technique is a way of using a physical input device (tablet,
keyboard, mouse, etc.) to input a certain type of word
(command, value, coordinates, etc.}. For example, some of
the interaction technigues +for command specification are
selection from a menu with a Jiht pen or with a cursor
controlled by a mouse, typing qf the command name on a
keyboard, and speaking the name of the command into a speech

recagnizer.

For output, lexical design means forming the symbols
and shapes which are to be presented to the user, using the
available hardware lexemes. For text output, this reduces
to selecting text attributes such as ¢font, size, color,
background color: the spelling (i.e., combination of
hardware lexemes. the character set) of words is already
defined in the dictionary. In other cases, such as
situation displays, the symbols vused must be designed and
composed from lexemes such as lines and other grahics
primitives, and the symbols must be assigned attributes such

a3 color, intensity, Jinestyle and size.

The nub of this Ffour-level Fframework for design are
found in formal Jlanguage theory;, the framework has been

successively refined and reported in a series of papers

19

P P L U

p:.
L | -
L
T
.!
Ja

v

TSI AREE U G [e A
. 0 2 g° s LUt TR

|
3
Y |

1
)
oo

’.-
e
4

b=
b
:

CFOLE74, FOLE78, FOLEB0O, FOLES1b1. We have worked/are
working with this framework in sevaral ways: the
organizatin of design principles, the evaluation of existing
user—computer interfaces, the evsluation aof interaction
techniques (which are the lexical-level design of the
input), the formal specification of ¢the syntactic and
lexical design of input and output, the calculation of
metrics of “goodness” based on the formal specification. and
the design of an "abstract intercction handler" to remove
much of the syntactic and lexical decign from the

application program.
Organizing Design Principles

The past ten years have seen several user interface
designers getting forth their design principles [BENN7é4,
BRITT77, ENGE7S, HANS71, WALL7&6] in the form of general
objectives and specific do’s and dont'’s. These papers plus
personal experience form the knowledge dase available to
most designars. Often the criteria are soundly-based: a
useful start in developing tools +for designers is to
organize the principles, showing how they apply at the
conceptual, semantic, syntactic, and lexical cesign levels.
This process has been partially completed, as reported in
FOLEB1b, for principles dealing with feedback, error
correction, rtresponse time, concistency. and display

structure.

Evaluating User—Computer Interfaces

20

L v o
et
r

PR ¥

21

o s 4 -
» AR REREN
. Sl U220
P PRI

part o
e
<

. i
e falap

remrans S £ 44
T

Fl

b~ MR

Rl

—
RS TTL

Lg

Given an organired set of dJesign criteria, it is
possible to perform & systematic evaluation of existing
user-caaputer interfaces by a combination of watching others
use the interface and learning ¢to use the interface
oneself. In ¢this process i¢ is critical to note
idiosyncratic Ffeatures of an interface when they are first
encountersd, lest one adjust ¢to the features. Two such
evaluations have thus +far been conducted: the first
(HEREBO1 of DIDS. the Decision Informatin Display GSystem
used by ¢the federal government for policy studies; the
second [(BLES8B1] of GSEEDIS, the Socio-Economic Environmental
Demographic Information System developed at Lawrence
Berkeley Labs. A third evaluation will be of a new
user—interface design, prior to its implementation. for
Battelle Northwest Labs’ ALDS (Anslysis of Large Data Sets)

system.
Evaluation of Intercction Techniques

Recall that an interaction technique is a way of using
a physical input device to input c word, and hence is the
lexical 1level input design. In FOLEBila we have described
and organized the interaction techniques by ¢their purpose,
which can be ¢to make a selection, designate a position,
orientation, or sequence of positions and orientations,
input a value, or input a character string. A number of
germane human factors design issues have been identified for

the techniques by drawing on the 1literature and the

21

TN T SV Y A STy, T ey
. - . . -t

guidelines mentioned above. Nine experiments dealing with
interaction techniques are also «critically reviewed. A
method of interaction technique diagrams is created, to aid
in understanding, analyzing, and dorumenting the techniques
and experiments. A diagram shows the cognitive, motor, and
perceptual steps which the user of a technique performs.
The report is meant as a guide to aid designers in selecting

appropriate interaction techniques znd devices.

22

adinbtiiers it it i

R

A B SR

-

i S Y
LTt

Sl
- .t

T

P
Lo e e

ey
e,

1

Formal Specification and Metrics

The syntactic and lexical designs of a user interface
should be describable by formal language tools, in ¢the
spirit (but not necressarily in the image) of BNF, regular
expressions. and flow expressions. We are developing formal
tools for describing both the input and output of a vuser
interface, as well as the relationship between input and
output. The input definition deals with concepts such as
token types (which are the purposes of interaction
techniques, as decscribed above), sequences of ¢tokens, and
the binding of tokens to sequences of actions wth physical
devices. The output definition deals with concepts such as
screen areas and their contents, and attributes (such as
calor:, font. and linestyle) of tokens within various areas.
Metrics treat issues such as complexity and consistency of
syntactic rules, consistency in ¢the wuse of codings,
continuity of visval cttention on the display, continuity of
tactile motion with the interaction devices, and time
raquired to input commands. The metrics draw upon the

guidelines mentioned zbove.

Tha decigner of a user interface will use the toals to
describe the interface. This in itsclf helps create a more
disciplined design environmant. In addition, the formal
definition will be processed, metrics evaluated, and
potential design problems flagged for further attention by

the designer. In the long run, the user interface definition

23

will be input to an interaction handler which will actually

implement the user interface.

- - 24

Abstract Interaction Handler

Writing an {ntéractive applicatian pragram involves
coding ~the semantic, syntactic, and lexical designs,
typically wvusing FORIRAN, PASCAL: ar a similar language.
There are two problems with this. First, the procedural
languages are nat well-suited to programming the syntactic
and lexical designs. Secondly, it is easy to intertwine the
cade which implements each of the three levels:, making later
changes to any of the levels difficult. The abstract
interaction handler is being designed ¢to implement the
syntactic and lexical aspects of input, and those parts of
the syntactic and lexical autput design having to do with

interaction, such as menus, prampts. and error messages.

This approach allows much of the user interface ¢to be
changed by modifying the interface definition made available
ta the interaction handler rather than by reprogramming. It
will be poscible to use two completely different user
interfaces, such as menu driven and command-language driven,
with the same application praogram. and to “fine-tune" the
details of a given user interface. Within the interaction
handler. syntactic and lexical level designs will be
separated, so that one can be weasily changed without
affecting the other. A preliminary design of an interaction

handler can be found in FELDS1.

25

-
. -
S

—',’,’r'.-'.IF’.'_. .
’ '.-‘ ;A

A Pt
L

AR

¥ mw
SR

.. P

b S et SON it
’

.pﬁir

K bttt NEREN
1@
0 ol STt

Referencas

BENN74

ELESS1

BRIT77

EMNGETS

FELDB1

FOLE?4

FOLE78

FOLESO

FOLEBLa

FOLEBLD

Bennett, J., "User-ariented Gr.phics Systems for Decision
Support in Unstructnred Tasks, Proceedings of
ACM/SIGGRATH Wovkohap on User-0Orianted Design of
Interactive Grachics Systems, Pit&sburgh, PA , (ctaber
1976, pp. 3-1idl

Blesser, T., P. Chzn M2i Chu, “& Critique of the SEECDIS
User Interface, " The Georne Washingstorn University,
Institute fov Infovmation Sciency and Tarchoolagy TYach

Report GWU-IIST-B1-04, March L193).

Britton &., "A Methodoleagy for the Erganomic Dezign o
Interactive Lemputer Graphics Systang, and its
Applicstion to Crystallographu, ™ Univarsity of Horth

Carolina atv Chapel Hill. UYL Seport No TR-77-011.
Novembaer 17977,

Engel, « and X Granda, T tdelines for Man/ii-alay
Interfacas, IBM Dloughleepsie .sboratory, TR 00, 2720,
December L5703,

Feldman, M Phralininary iraciga 9f an Alscrant
Interaction Mandler, " The Sesrge Washinyton University,
Institute for Information Sciznce and Technology Tach.
Report GWU~T1[ST-B1~-04, Washinglon, D.C.., 1981.

Foley, J. and V. Wsllace, "The Aart of Natural Graphic
Man-Machine Caonversation, " Prucradings TEEE 42(4), April
1974, pp. 462-470.

Foley. Joo "The Human factors-Computer Graphics
Interface, " Proceedings of Sympo-.ium an Human Factarc and
Computer Sciences, Computer Systems Technical Interast
Group, Human Factors Society. June 1978, pp. 103-114.

Foley, J.. "The Structure of Command Languages, " in R, A,
Gued . et al. . eds., Methodology of Interactior,
North-Holland, Amsterdam. 1980, pp. 227-234,

Foley, J., V. Wallace, and P Chan, "The Human Factors of
Interaction lechuniques, " 1he George Washington
University, Institute Fov la"ormation Science and
Technolngy Tecnnical Report GWU-1IST-831 €3, Washington,
D.£., March 1931,

Foley, Joo " Methaodology ¥c: ti 2 Lesigin are Fvaluaticn
of User ‘“Casiputer Interfaces.” The George MWashingten
University, Institute far Infarmation Sciernce and

Technoloay Technical R2port GWU-TIST-81-05, Washingtni,
D.C.. March (701,

o e ek ekl PR

HANS71

HERBZO

Nal.L76

Hansen, W., "User Engincering Principles for Interactive
Systems. " Frocsedings 1971 Fall Jointg Camputer
Conference, pp. 523-532.

Herbart, 1., "Evaluation of the User-Camputer Inter~¥ace

Design ot the Domectic Information Display System ' Tna
George Washington University, QDepariment of El2ctrical
Engineeringy and Computer Srionce Technical R:ipart

GWU-EECE-B0-07, Washingsan, D O, (980

Wallace, V.. Sumnmary of Coovereztiinal Ergonemice’
Sesgsion:, ACM/SIGGRAFH Workshop or W re~ilrignced Design nf
Interactive Graphics Byztems, Pitisourgh, PA . Qctover

1976, pp. 121-122.

Psychological structure in information organization and retrieval:
Arguments i1or more considered apprroaches.
and work in progress.

George W. Furnas
Computer-user Psychology Research Group
Bell Laboratories, Murray Hill, NJ

Any given artificial storage and retrieval system forces structure
on the information stored within it. Psychologically, however
many kinds of structures exist for the representation of
information, and each has domains where it is well suited and
domains where it is at best mistit. The mctivating assumption here
is that. if one wishes to make information systems humanly
accessible, more serious consideration is needed of the variety of
representations characterizing human knowledge, coupled with the
necessary inventicn of new compatible retrieval interfaces.

A textile dyer would no doubt be exasperated by a menu-driven. or
even key word, specification of colors. Our knowledge of color
space argues thet adjusting three knobs. or perhaps moving a light
pen on a graphics screen would prctably be much better. 1In
contrast, asking zoo visitors to access informetion about
individual animals by this same three-knob technology would be
ridiculous. Menus or keywords would be very appropriate. The
domain of animals has a very different structure than does thut of
color. and to use the same retrieval system for the two is a
nistake.

Not much experimental evidence exists regarding implications for
conputer access, but from the standpoint of reflecting
psychological similarity. recent work by Pruzansky. Tversky and
Carroll (1980) emphasizes the diversity of appropriate
representations. Using currently available scaling procedures in
8 large survey of categories. they typically found the domains to
differ strongly in the relative suitability of tree and
nmultidimensional structures for capturing people's similarity
judgements.

o2 il

There are of course even more representational structures than the
two investigated by Pruzansky et al. From the context of
similarity scaling alone, one might mention. in addition to
multidimensional spaces and hierarchical clusterings. additive
trees. more general graphs. factor-analytic structures. additive
clusterings, etc. These structures differ in many ways. including
continuity. contingency constraints on structural components.
complexity, and symmetry. All of these properties presumably
affect representational adequacy.

'-'-' [.“h."_‘;"."‘-‘ ., s il
. RS - A S S
A B SR S DR SR

v (4
'k AT A
P ,., et S
. w ‘e e e T

e PR R

28

L ol Al il et g

B b2y i
A-'l“ I A
T At e s

tmlatatatatain . ia’

Scaling techniques. among others, can help to identify
psychological adequacy of representations. but in constructing
retrieval systems, a further issue arises: How can any of the
variety of possibly appropriate representat? _ual structures te
accessed? Hierarchical tree structures lend themselves to
classical menu-tree schemes, and multidimensional configurations
with suitable properties (e.g. 1low number of dimensions,
separability?) may perhaps be accessed by various analog input
devices. But what of other types of structures, especially as we
seek richer structural representations?

Thus cognitive considerations motivate the search for nonstandard
datatbase interface solutions... new structures. and new access
procesves. The work presented here represents a simple ongoing
ettort in that direction. It basically involves a generalization
of tree structures, and of the corresponding familiar menu access
mechanisms. ’

Standard menu systems present a screenful of choices subdividing
the domain of a database. The user makes a selection from

these. resulting in a new set of more detailed selections. further
subdividing the selected set. A sequence of choices from a
succession of menus eventually brings the user to some final
target item. Typically. the menus are organized into trees. That
is. there is usually only one séquence of choices that will arrive
at any given target. While some systems have exceptions to the
unique path rule. these tend to be infrequent, and certainly not
essential to the character of the systen.

Note that in menu trees, there are many choices, a whole menu
full. presented at each step when moving down through the
structure. There are occasions, however, when one must move tack
upward in generality. as in recovering fror a mistake or changing
tarpgets in mid-search. Then, unlike when moving downward. there
is no choice given: Trees have many "down' choices at any point.
but only one up”. The concept being explored here revolves
around allowing menus for upward choices, as well as the usual
downward ones.

The psychological mctivation goes as follows: Consider a given
node, or point of meau presentation in the structure. to represent
a conceptually derined class of possible targets. A given
conceptual class can certainly contain many difterent subordinate
classes. enumerated in the downward menu. but often in rich
domains the class can also be contained in many superordinate
classes. A traditional tree representation is forced to organize
on the basis of only one superordinate at each level. In so far
as these difterent superordinates may each be useful in ditferent
circumstances. this psychological orgenigation should be reflected
in the access structure. by giving users choice when moving to
superordinate levels.

29

WP SR WP G W DT YT TPUE S G TPE SR N SN DG P Y S . N P W

oy LAR &8 o S o8 4
-i..-.n- i,
, S 5 '
0 o 8B % % % %

R

LS .'

v

P

T, huh 2T R s Je e £
g "I" Wik ‘I. .
o P A

o 9% o P

Imargine. ror example, one had a computerized system for retrieving
cooking recipes that was being used to plan a meal. Imagine
further that the user had proceeded down to a screenful of chcices
about types of salad (CAESAK, SPINACH & MUSHRUUM. etc.). but had
just decided after all. agzinst any salad for the meal. and was
ready to retreat back up the structure to other categories of
choices. Conceivably, the user would have been interested in an
alternative in the form of some other cold tood. say cold cuts
instead of salad, so that a superordinate of CuLb FOOD would be
appropriate in the structure. Alternatively, it might have been
that the user wanted some other vegetable dish. so that a
VEGETAELE node would have been the most useful superordinate. Or
perhaps the user wanted a different early course for the meal. say
soup instead of salad. Thus. any of several superordinates (COLD
FOODS, VEGETABLE DISHES. EARLY CUURSE DISHES) might have been what
the user wanted. Why not give the user exactly such a choice, in
an Up menu from the salad node, in addition to the typical Down
menu? If the user's head prominently figures a certain form of
representation, externalize it in the organization of the data.
and take advantage of it in the access mechanism.

We are in the midst of exploring the concept of up/down menu (KUD)
systems on a small artificial data base of a few hundred target
items. There are a number of implementation chcices that require
research. most notably regarding how to construct the MUD
structures: In using normative. categorization data. various
verification and "garbage collection” ideas must be invoked to
ensure that links exist everywhere they are appropriate. and
nowhere else. We currently ask subjects to construct "isa”
networks by repeatedly nominating successive superordinates from
each node. and then use frequency thresholds on nodes and links
produced across subjects.

When other subjects are then allowed to use the MUDs. several more
profound issues arise. A necessary result of having multiple Up
choices is that Down choices are not always partitions of the
conceptual class encompassed by a node. The consequence that that
some choices overlap is of rixed advantage. Under some
circumstances it allows subjects the benefit of appronaching =a
target with different interests in mind or with a different
psychological 'set." but it can also mean that subjects rust not
only decide whether a given choice will lead to their target. but
weifgh the relative merits when several reasonable choices exist.
Another issue is that MUD structures lack the systematic traversal
algorithps that trees have. Thus it is more difficult to be
exhaustive, i.e. to make sure all nodes have been seen at least
once, and efficient. i.e. tc avoid unnecessary repetitive

viewing of nodes. Circumstances exist where these considerations
might be important. A third issue is that the class of targets
actually subsumed by any downward choice is constant. while the
users interpretation of the choice can be effected by the history
of superordinates just passed through. In a tree. there is only
one possible ancestral history. so no ambiguity arises. but not so
in a NUD structure, so users can interpret a choice variably. due
to the different emphases of different superordinates.

30

2

r,. .
cant’
.'

......

. N) . N e e o
.......... - R N T PRSP ST LI NV P P W PR PN W LIy

Some issues also arise in working with MUDs that are perhaps even
nore relevant to tree “ructures. Transitivity of class inclusion
is critical to any system based on conceptual hierarchy. BHRirh
level choices require inferring the targets sutsumed under
intermediate level nodes. Intransitivity can foil this: Suppose
one is looking. in a lay person's botanical guide. for Scrut Oaks
which are classified under QAKS. and that OAKS are in turn
clacsified as TREES. The problem is that Scrub Oaks are not
popularly considered trees (rather, say shrubs). This lack of
transitivity. due perhaps to fuzzy classification systems, would
lead one away from a correct choice of TREES in the pursuit of
Scrub Oaks. MUD structures have an advantage over menu trees since
they can allow other routes to Scrub Oaks that are perhaps free
fromw intransitivities.

While this work represents only one modest example of exploration
of more diverse psychologically motivated structures. we believe
that efforts like it can lead to systems of greater help to human
users.

31

The Nature of User-Generated

Commands for Interacting with a Computer

Mark D. Jackson
Judith E. Tschirgi

We describe the results of an experiment investigating
user conceptions of a natural language for interacting with
a computer information system. Novice and experienced
computer users performed text editing and information
retrieval tasks using a simulated interactive system. For
each task, a script or sequence of actions was presented
to the user. At each step, users read a description of an
action, such as correcting errors in text or selecting a
page of information to view, and typed a command that they
thought was a natural request for the action. If their
command was inappropriate, they were asked to reword their

attempt; otherwise there were no constraints on their input.

A diverse set of command terms was generated by both
.7 groups of users, with few actions eliciting common terms
from within or across groups. Novices used more English-
like command formats whereas the experts followed computer

dialogue conventions learned from experience. When correcting

T

ey Ty

commands, novices were mors likely to use strategies applicable

Ty

T

to normal conversation. In general, the responses generated

32

—or —TyY
'."T"“‘

PP 'L;h.l PP LRI T S YOS N ST R S

‘Iﬁ
by our users under instructions to produce "aatural' commands
'« depended criticallv on the user's experienca.
i We have shown that computei experieuce afllzscrs users'
- spontaneous approaches to intevacting with : compurer.
[y
e Our results suggest that no single coumara syulax or set
45 of lexical items will be comsistent wich vhe expectacions
of all users withou:z additionual training. Thus, furuvre
'».' Wt . . . R -~ .
T research must determine the characteristics of easily
T.v
SR learned persorn-computer dialegues that are "ua.ural" across

all levels of experience.

R § YA
] ..

. 2t
.

i £ At
-0, .
L

T

o e e e
.

7.

e o
35

ERRC S Y YAOY WP WP SR Y

A Conceptual Approach to Natural Language Fact Retrieval
Janet L. Kolodner
School of Information and Computer Science

Georgia Institute of Technology
Atlanta, GA 30332

1. The problems

person: What's been going on in the world recently?

computer: The last hostage was finally released from Iran.

person: 1 thought the hostages were released all at once.

computer: She wasn't really one of the hostages, but was

arrested later when she traveled to Iran as a
Journalist to cover the Iranian revolution.
She's been referred tc a3 the 53rd hostage.

person: Why was she arrested?

computer: Trumped-up espionage cnarges.

Suppose we wanted to build an intelligent fact retrieval system
such as the one above. What would that require? It would have to be
able to deal intelligently with a human user, giving answers containing
not only the appropriate inforiation, but also the right amount of
information. It would have to be able to analyze the intent of a human
question or response, figurirg out what the questioner really wanted to
know, The system would also have to be ahble to search its memory in a

smart way, so that as the memory grew, it would still respond in a

reasonable amount of time.

There are three major problem areas to be addressed in designing
such a system:

1. Interfacing with the user: analyzing his natural language
questions, and deriving search keys from them

2. Memory search

3. Memory organization and maintenance

Tl

These problems cannot be solved independently of each other. The

o

organization of memory constrains the types of retrieval and updating

!!-, processes the memory can have. On the other hand, memory organization,
ﬁq - and therefore procedures for adding information to memory, must be

designed based on retrieval requirements. Similarly, memory's organiza-

:: tion and content, and the relationship between items and categories in
: memory should be taken into account in interpreting the intent of user
é; questions.
i The CYRUS system has dealt with aspects of all three of these
problems. CYRUS has a long term memory which was designed to store
Eé information about important political dignitaries. It has been used to
o8 store and retrieve information about former Secretaries of State Cyrus
o Vance and Edmund Muskie. CYRUS automatically adds new information to
. its memory, maintaining good memory organization in the process. It can
;_ be queried in English, and uses retrieval strategies and knowledge about
g the organization of its memory to search for answers. A successor to
] CYRUS, TED, will keep track of events in the 1life of Ted Turner, a
" celebrity, sports figure, businessman, and broadcasting figure.
: The remainder of this paper will outline some of the problems
;3 involved in designing a fact retrieval system which will communicate
v effectively with people. Interactions between the interface, memory
éj search, and memory organization will be described., It will also outline
- the solutions to these problems, as implemented in CYRUS and described
: in Kolodner (1980).
ii‘ In considering these problems, we will assume a memory organized by
e conceptual categories, with events indexed and sub-indexed in those
: categories by their salient features, Thus, memory processes will
i
b

- 35

LN U TR
w‘.“. W e e Tt e .. . R . s
PO . N W Y PSP e P S SN G W WY ~ T T T PRV TN S WG S TP W SRR JUU

I A |
N N
-

s

4
H

Y
R RN
FRarae

v
+

PR AR
B

'.'f'..".,.".'_" AR T g
et ,
I _g‘;

L ot
.
*

i S Sl
RN

25

manipulate conceptual information, or the meaning of the data in the

memory, and will not be concerned with the words used to express those

concepts.

2. Retrieval requirements

2.1 Choosing a category for search

Searching a memory organized in categories requires specification

of a category or categories to be searched. Consider, for example, the

following question:

(Q1): Mr. Vance, when was the last time you saw an oil field

in the Middle East?

If "seeing o0il fields" were one of memory's categories, then this
question would be fairly easy to answer. "Seeing oil fields" would be
selected for search. If it indexed an episode in the Middle East, that
episode could be retrieved from it. Similarly, if "seeing objects" were
a memory category, it could be selected for retrieval and events in the

Middle East and events at oil fields could be retrieved.

If neither of these categories existed, however, a category for
search would have to be chosen, We can imagine the following reasoning

process being used to do that:

Al1: An oil field is a large sight, perhaps I saw an oil field
during a sightseeing episode in the Middle East.

Using information about episodic contexts associated with "large
sights", a "sightseeing" category can be chosen for retrieval. Its

contents can be searched for an episode at 0il fields in the Middle

36

.........................

e

East. If the sightseeing category organized its episodes according to

the type of sight and its part of the world, and if there had been an

R episode in the Middle East at an oil field, then "a sightseeing episode
0 . at an oil field in the Middle East" could be retrieved.
& The problem of choosing a category for search is both an interface
:i problem and a search problem. Search requires specification of a
i category to be searched. For a very complex data base, however, we can-
N
e not expect a user to know all of memory's categories. Nor can we expect
that every natural language question asked of a data base will specify a
. category for search.
In CYRUS, this problem is solved by associating with each concept
; in memory the categories it is related to. Thus, the concept "large
sights" has "sightseeing" associated with it, while "international
!! contract" has the category "political meetings" associated with it. In
%: the first step of the retrieval process, the conceptual representation
) of the question (produced by a conceptual analyzer) is checked to see if
& it already specifies a category for search. If not, contexts are chosen
ne from among the categories associated with each of the question com-
o ponents.
Sl
:? o 2.2 Non-enumeration
g
g 2; One of the most important problems to address in designing an
f _ interactive retrieval system is the following:
: Retrieval should not have to slow down as memory grows.
L L This requirement constrains both the retrieval processes and the memory
é - organization, In terms of the retrieval processes, it requires the fol-
& o lowing:

Do Q00 L SRS S S W W U SR WU ML AL PR A R NP P S et Mt e alaan,

.{Flll

AR

]

TN W

Iy

-

-,

v ka2 S 4
B { IS
™

S B RIS
STV ¥ N R

Retrieval from a category must be able to happen without
enumeration of the category.

In fact, this interface problem depends on both memory organization and
retrieval processes for a solution. If categories cannot be enumerated,
then there must be some other way of searching a category. This can be
done by indexing items intelligently in categories, and then by specify-

ing and following appropriate indices during retrieval,

This method of retrieval brings up special problems. Retrieval is
easy if a question specifies features which are indexed. This is not
always the case, however. Two solutions to this problem have been

implemented in CYRUS —- automatic generation of plausible indices, and

search for alternate contexts.
2.2.1 Index fitting and generation of plausible features

Just as we cannot expect a user to know all of memory's categories
or to specify a category in his question, we cannot expect him to know
memory's indexing scheme. Thus, features specified in a question might
not correspond to features indexed in memory. In that case, given

features must be transformed into indexed features.

Inferring indexed features is a way of directing search within a
memory category without enumerating the category. Generated features
can be followed to find the target item in the category. In addition,
there must be a way of recognizing that two different deseriptions refer
to the same item. One way to do that is by transforming one description

into the second one.

Continuing with the example above, suppose sightseeing episodes

were not organized in a category according to the type of sight or by

38

PRI e Q PRy PAPRE Wy Y. A [T S S s P S UL SO S,

WP VRS - !

.

their place in the world. In that case, the following elaboration of

the initial retrieval specification might be appropriate to answer the

question:

A2: Which countries in the Middle East have oil fields? Iran

and Iraq have oil fields, and Saudi Arabia does. ...

If sightseeing episodes are organized according to the country they
took place in, then elaborating on "the Middle East" and specifying
particular countries in the Middle East would enable retrieval of
episodes that took place in each of those places., Instead of searching
for "sightseeing at an oil field in the Middle East", search for each of
the more specific episodes "sightseeing at an oil field in Iran", "sigh-

tseeing at an oil field in Iraq", etc. could be attempted.

The process of transforming given features into indexed ones is

called index fitting. 1Index fitting is done in CYRUS by component-

instantiation rules. These rules use information about components in

context to infer additional features of a specified item, The
nationality of participants in a political meeting, for example, is
kncwn to correspond to the sides of the contract being discussed at the
meeting. Given the participants in a meeting, that information can be
used to infer aspects of the meeting topic. Component instantiation
rules generate plausible features for a targetted item. These features

correspond to indices which should be traversed to retrieve that item

from memory.

2.2.2 Alternate context search

Elaboration of plausible features is only one way of directing

search, and it 1is not always successful. Suppose, for example, that

there was not enough information to narrow a search key to an easily

Ty ¥
e A
e e] .
e 5

enumerable (i.e.,, small) part of the data base. In a memory where

records refer to other contextually related records, it might instead be

500~ RN

appropriate to search memory for an alternate, more retrievable context.

e
o

In other words, retrieval can proceed by searching for a related context

™
'\"_‘.

which (1) might be more retrievable than the target item, and (2) might

refer to the item targetted for retrieval.

Since CYRUS' éemory is organized in event categories, alternate
context search in CYRUS corresponds to search for an episode related to
the targetted event, Since sightseeing in the Middle East would have
had to happen during a trip to the Middle East, retrieving a trip to the
Middle East could aid retrieval of an appropriate sightseeing
experience. Thus, the following reasoning would also be appropriate to

answer the question above.

A3: 1In order to go sightseeing in the Middle East, I would
have had to have been on a trip there. On a vacation
trip, I wouldn't go to see oil fields, so I must have been
taken to o0il fields during a diplomatic trip to the Middle

East, Which countries might have taken me to see their
0il fields? Saudi Arabia has the largest fields, perhaps
they took me to see them. Yes, they did when I was there

last year.
Why does it seem reasonable to search for "trips" when a "sigh-
tseeing" episode should be retrieved? How can search for alternate
events be constrained? Only alternate contexts that might be related to

an event targeted for retrieval should be searched for.

In general, for search to be constrained to relevant contexts,

memory categories must hold generalized information concerning the

E

ie

rj relationships of their items to items in other memory categories. 1In
.

£ CYRUS, alternate context search is facilitated by three things:

40

DIPEIPRIP ST WO T A VU WS, WY G WL . o - ebitinns e S S ot e ko i aia e atatalala Ale

D R v A

ke

———v
1
o

[

1. knowledge of the usual relationships between event
categories

2. a set of context construction rules for constructing a new
context based on that knowledge

3. a set of search strategies for directing search for the
target event within the context of the alternate event

Thus, CYRUS knows about the usual relationship between sightseeing and
trips, how +to construct a trip context based on a sightseeing context,
and how to search the sequence of events of the trip to find a sigh-

tseeing experience once an appropriate trip is found.

2.3 Maintaining a conversational context

Maintenace of a conversational context is necessary for resolution
of ambiguous references, anaphora, and pronominal reference. Suppose,

the question above were followed in conversation by the following one:

(Q2): Did you talk to the workers there?
In order to understand what "there" means, the answer to the previous
question must be consulted. In order to understand which workers are
being talked about, the context of "visiting oilfields", plus knowledge

about o0ilfields themselves must be used.

Maintenance of a conversational context can also constrain memory
search. Often, it is necessary to search only the context of the answer
to the previous question to find an answer to the current one, In the
example above, for example, only the events involved in Vance's visit to
the oilfield in Saudi Arabia need be searched for an answer. If the
previous context is maintained, it can constrain search to that episode

only, so that all of memory does not have to be searched.

S

4

N ok Sl S ACL AN A e SaP i
AL S O N i

2.4 Summary of retrieval

The retrieval process described can be seen as a process of

reconstructing what might be true, and checking memory to make sure it

indeed was. To retrieve an episode of "seeing oilfields", a hypothesis
was made about the type of event it might have been (sightseeing), where
it might have happened (Iran, Iraq, Saudi Arabia, etc.), and what else

might have been going on at the time (a trip).

Judging from this example, the process of retrieval requires at

least the following processes:

1. selection of a category for search
2. search within the category for the targeted event

3. elaboration on the specification of the event to be
retrieved

4, search for episodes related to the target event

3. Requirements on the memory organization

The ability of memory to support retrieval without enumeration is
also dependent on the memory organization. The traditional solution
within computer science to the non-enumeration problem is to index items
within categories. An event should be indexed in a category by those of
its features that are salient to the category. In that way, specifica-
tion of an indexed feature will enable retrieval of items with that

feature without enumerating the whole category.

If memory categories are heavily indexed by salient features,
retrieval processes will have a large selection of features to specify,
any of which might specify a target event. The retrieval process will

42

"
s
Ve
A
.
»
»

-
.
-

ol

£ 4
A0

9

b A &) ey
B oE A IEE g

a

be made easier since the easiest elaborations can be attempted first.

The richer the indexing, however, the more space is needed for

storage. Indexing must be controlled so that mediory does not grow

exponentially. In CYRUS, similarities between events are used to

control indexing. Memory keeps track of the similarities between events
within a category, and 1limits indexing to the differences between
events. Thus, 1if almost all the events in a "diplomatic meetings"
category are with foreign diplomats, indexing them according to the
occupations of their participants would be redundant and therefore
unnecessary. It would not divide the category into significantly smal-
ler parts. If, however, one of those meetings were with someone other
than a foreign diplomat, indexing the meeting by that feature would
differentiate it from other events in the category. In fact, the
similarities which constrain indexing correspond to the generalized

information necessary for retrieval.

Finally, a memory for events should maintain itself. This means

that the process of selecting indices should be automated. It also
means that events must be sub-indexed within the sub-categories that are
formed when multiple events are indexed in the same way. Otherwise, the
sub-categories would have to be enumerated. This places another
requirement on the updating processes. In order to constrain later
indexing, and in order to guide the retrieval strategies, the automatic
updating process must also keep track of the similarities between events
in each newly-created sub-category. If we don't want retrieval to slow
down as new events are added to memory, then memory must be able to
maintain its organization, creating new conceptual categories when

necessary and building up required generalized information., CYRUS does

43

e S 0 N - o, o Ca o ° . 7 o« v T e e - . -t
VRN T I G it WAIE Wil P G WV W YU Y Jr Gul U I U el Y Y MY |

al

this through a series of organizational strategies.

Another aspect of maintaining memory's organization involves
monitoring memory search. More frequently requested information should
be more accessible than less frequently requested information, and more
recently accessed information should be more accessible than less
recently accessed information. This 1involves both reorganization of
memory taking frequency of access into account and restructuring the
organizational strategies themselves, so that more frequently asked for
types of information will automatically be organized for accessibility
as they are added to the data base. This, and other memory maintenance
problems which have not been described here, are being addressed in

current and future research.

44

P PR SLAR WA PO TR S P P e am e e m_a e e e e s Ta

™
Psychological Investigations of

L Natural Command and Query Terminology
ﬁﬂ' Thomas K. Landauer
Eﬁ‘ Susan T. Dumais

Computer-user Psychology Research Group
» Bell Laboratories, Murray Hill, NJ
EE It is frequently asserted that unsophisticated users would
iy find computer systems more congenial if communications with

them were to employ more "natural"” words. In a series of

o empirical studies, we have (1) developed a method for iden-

tifying natural command words for a particular task, (2)

tested the value of the resulting natural command lexicon

-, in the initial stages of transfer from manual to automated

i task performance, and (3) induced people to form "natural"
data queries and analyzed the language they used.

Identification of "natural" command terms. Twenty-two stu-

[dents iIn secretarial schools and twenty-six high school
students with typing skills were given manuscripts with

o author's marks. The author's marks indicated a variety of

i desired corrections corresponding systematically to the

kinds of changes that are accomplished in manual or compu-
ter text-editing operations. The students were asked to
write instructions to another typist, who did not have the

A author's marks, specifying what was to be done to the
manuscript. This method produced verbal descriptions of
| actual editing operations (e.g. "take out the word the")

i as contrasted to description of the author's marks (e.g.
"crossout") or goal (e.g. "fix the spelling”). Among
o~ noteworthy resulting observations were the following:
b (1) There was little agreement on word use; e.g. the three
most frequent operational verbs used accounted for no more
than 33% of descriptions of any one correction, (2) The words
used were not like those commonly employed by computerized
- editing systems, e.g. the verb "delete" was never used, and
(3) Unlike many computerized text-editing systems, students
and secretaries tended to use different words to describe
operations on characters and blanks, but the same words to
describe similar operations on whole lines and line-internal
strings (e.g. "change 'string a or line a' to''string b or
line b'").

‘P

PR

]
N

.
L)

. Testing the value of natural command terms for initial learning.
E We devised a set of minlature text-editing systems, each con-
sisting of only append, delete, and substitute operations plus
start and stop commands. For one version, the verbs used in

............................
L T T T T e e T T o Tt TS

the operation commands were "append", "delete" and "substitute",
terms often used in computer text-editors. For another, they
were the verbs most frequently used by secretaries and typists
to describe the required action, "add", "omit", and "change”,
respectively. A third variant used randomly chosen English
verbs, "cipher", "allege", and "deliberate" as a baseline
control for lexical naturalness. In addition, the text-
editors varied (a) with respect to whether the command verb

was to be spelled out or abbreviated to its first letter,

and (b) with respect to whether the same command word applied
to both line-internal strings and whole lines (e.g. "omit /a/"
for within - and "omit" for whole-line) or used different
command words (e.g. "change /a//" for within-line and "omit"
for whole-line). Forty-eight secretarial and typing students
each spent about two hours studying an introductory self-
instructing manual and simultaneously doing a series of on-line
learning and test exercises. The manuals varied only in neces-
sary ways (essentially only in command names) and as little
extra help as possible was provided.

The main results. of interest were as follows: (1) The time

to perform test exercises was not significantly influenced by
command name variations; subjects performed as well when they
were learning to "allege", "cipher", and "deliberate" as when
they were learning to "add", "omit" and "change". However, a
post-session questionnaire revealed some subjective preference
for the more familiar terms. It is also important to note
that the subjects were learning a very simple system with very
few terms, and that they were not required to remember the
terms over substantial periods. It is possible that "natural”
terms would be advantageous in larger lexicons or when long-
range recall was necessary. However, natural words do not
appear to provide substantial benefit during the highly cri-
tical first few hours of introduction to the new and exotic
computer aided text-editing environment, as one might have ex-
pected and/or hoped. (2) Abbreviated command names were
slightly more time-consuming to use at first, but became sig-
nificantly less so after some practice. (3) In this case, at
least, the use of different command names for whole-line and
within-line operations resulted in hetter performance than
using the same name for both. This is contrary to subjects'
usage in spontaneous descriptions. We hypothesize that the
requirement to use different syntactic constructions in our
editors was responsible; that differing command words make it
easier to learn and use differing constructions even if the
operations are naturally thought of as similar.

Characteristics of natural data specifications. Three hundred
and thirty-seven college students tried to specify verbal
objects. They were given a list of items like "newsweek",
"Empire State Building", etc. and asked to try to specify each
so that another student or (in other cases) a computer would

46

..
.........................

respond with the provided word. There were no restrictions
‘, as to the form or content of the descriptions (except, of
course, that they could not contain the target item).
€3- Among interesting characteristics of the response were these:

= (1) Students rarely used boolean expressions more complicated
than sxmple conjunction. (2) Spec1f1catlon by exclusion

Eﬂ (e.g. "a popular weekly newsmagazine other than Time") was

L very infrequent despite the intentional inclusion of items
that easily admitted of such specification. (3) The most

X common specification techniques were simple lists of positive
w attributes or a single immediate superordinate, followed by a
' list of attributes (e.g. "a tall building in New York located
= on 34th Street and 5th Avenue"). (4) Specifications were
's,,g often very vague and depended heavily on presuppositions about
e preferred responses of the target person or system (e.g. "a
- tall building in New York", a specification that apparently
tad assumes that one member of a2 large class will be known to be

most representative or most dominant and will be given in the
absence of further specification).

B

gﬁ We have no evidence as yet as to whether systems allowing
"natural” query specifications would be easier to use.

& However, it does seem apparent that the use of more precise

Ii expressions cannot be expected without special, perhaps dif-
ficult, training.

ot

-
AN

i W |
&~
-~

‘-‘\‘ .- ‘e O09%” %% 020 Fofo e fose 000 S0°%°p P S F 5,802 g° aRsoq o o
-\‘l-!-i-n‘L-L.f AR e iatala ety SRttt T e el St e e e Tt T e

¥
o1
4

LXLEER K

W
el A A

ORGANIZING MEMORY FOR USE N UNDERSTANDING
oy
Michael Lebowitz - Columbix University

1 Introduction

Episodic memory plays an important role in the understanding of natural
language. It can be used to provide context for top-down processing, to
determine the segments of a text that should be focused upon,
situation-dependent defaults, and so forth. While this should come as no
great surprise, it is the case that most of the work relating memory {in the
form of databases) and language understanding has emphasized the utility of
natural languaye front-ends for database query ([Harris 78, Kaplan 77, Woods
and Kaplan 72}, for example), rather than the ways that memory can be used in
language processing. Furthermore, what work there has been on using memory
for language processing has been in the form of question answering, ignoéing
entirely the crucial issue of usiny existing knowledyge in memory to help
acquire more information. The use of memory in the process of reading text
for the purpose of updating memory - und the effect this has on maemory

organization - is extremely important, and is the issue [will address here.

In the course of this brief presentation 1 will be using examples from a
computer model that is coricerned with the relation between language and
memory. IPP (the Integrated Partial Parser), written at Yale, is able to read
news stories about terrorism and record them in a coherent memory. It makes
generalizations that help organize the memories of the events described and
are used to assist in later processing. I[PP 1> fully described in [Lebowitz

80). A sccond program, RESEARCHER, is in the ~2rly stages of lavelopment. It

B e

ol bod Yook
* . «*

37208

Y]

T
o

&
LA

U
® s
ol X WY

B

will be based upon IPP, but will include a memoty of a scientific domain,
buiit up by reading technical abstracts. I o the complerity of the
material that RESEARCHER will be readirg, che ace of nmemocy in rhe

understanding process will be extremely important.

The point that I want tc stress heire is that tie need for applying
information from memory during understanding (knowledje acquisition) must he
considered while attempting to determine an appropriate memory organization.
In the space available here I will give several examples illustrating the need
for the apblication of episodic memory to understanding, and then outline an

appropriate memory organization that keeps this use in mind.

2 why we need to use memory in understanding
The followinq story is rather typical of those read by I1PP.

Figure 1: Attack on kibbutz
S1 ~ UPI, 7 April 80, Israel

Israeli troops today stormed a children's dormitory in a kibbutz on
the Lebanese border to free hostages seized nine hours earlier by
gun-blazing Palestinian querrillas and killed all five raiders.

There are two problems in understanding story Si that memory can help
overcome, The first involves the meaning of the word "stormed", which in this
domain can refer to either terrorists attacking a building or government
officials couhterattacking a group of terrorists. A similar problem arises
with “"seized", which could plausibly refer to either a kidnapping or a
building takeover. The later ambiguity is in fact never resolved in this
text. Each of these problems is easily overcome by accessing the proper
information from memory, generalizations such as those in the next fiqure,

made after reading earlier stories.

49

A
rA
:

Lt DY

AL ¢ 2 et LE Ry 83

Figure 2: Generalizations about extortion in Israsel

————— ot T o e U = o B0 = e o o e e M o e o W e e ok e

Israeli trooys carry out counterattacrs against terrorists.

" Palestinians in Isracl engage in extortion by taking places cver.

Both ambiguous words in Sl can be resclvcd by assuming that when relevant
generalizations exist, words shouid be disambiguatsd so that the new story
fits the existing generalizationz. The C[(irst generalization allows the

disambiguation of "stnrmed" as it is read, using this rule. Simiiarly, we

assume "seized" indicates a taksovar, since that corresponds to the second

generalization. Had the generalization. stated that extortions in Israel were
usually kidnappings, then "seized" would have been assumed to refer to such an

event.

Notice that we cannot expect a person (or computer program) to be
pre-supplied with all the generalizations necessary to resolve problems of
this sort. 1Instead, these observations must be developed by reading (or

otherwise learning about) specific events and generalizing from them.

The following story also requires information from memory.

Figure 3: Basques implicit in attack
S2 - New York Times, 24 August 79, Spain

Bombs exploded in a French bank and a French immigraticn office in
northern Spain early today, causing damage tut no injuries, according
to police,

This story does not specify the identity of the terrorists who set off
the explosion described. However, most people with some knowledge of Spain
are aware that this was probably a Basque attack. Such a conclusion comes

from a previously made generalization about terrorists in Spain.

<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>